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On the Discretization in Time of Semilinear 
Parabolic Equations with Nonsmooth Initial Data 

By Michel Crouzeix and Vidar Thomee 

Abstract. Single-step discretization methods are considered for equations of the form u, + A u 
= f (t, u), where A is a linear positive definite operator in a Hilbert space H. It is shown that 
if the method is consistent with the differential equation then the convergence is essentially of 
first order in the stepsize, even if the initial data v are only in H, but also that, in contrast to 
the situation in the linear homogeneous case, higher-order convergence is not possible in 
general without further assumptions on v. 

1. Introduction. We shall begin by recalling some results concerning the discretiza- 
tion in time of the linear homogeneous equation 

ut +Au=O fort>Ou1= au/at, 
(1.1) ~~~u (O) = V 

where A is a selfadjoint positive definite operator in a Hilbert space H (cf., e.g., 
Baker, Bramble and Thomee [1]). 

Let r(z) be a rational function having no poles for z > 0, and define an 
approximate solution Un at t = tn = nk, where k is the time step, by 

Un+i =r(kA)Un for n= 0,1, 2, ....I 
UO= v. 

Assume that the approximation is of order p with p > 1, or 

(1.2) r(z) = e-z + O(zP+1) as z -* 0, 
and also that the method is stable in the sense that 

I r(z) I,<1 for z >O. 
Then one may show the "smooth data" error estimate 

- Un-U(tn) || < CkP1I APv i| for v E D(AP). 
This follows easily from spectral representations and the fact that under our 
assumptions 

Jr(z)l- e-nz Czp forz > O. 

In applications, the requirement v E D(AP) is quite restrictive. For example, if A 
is associated with an elliptic partial differential operator in a domain 2 c Rd, it 
demands not only smoothness of the initial data, but also that they satisfy certain 
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compatibility conditions at the boundary as2 for t = 0. However, under the stronger 
stability assumption 

(1.3) Ir(z)I< I forz >O,andIr(oo)I< 1, 

one can also show the "nonsmooth" data error estimate 

(1.4) jLU4 - u(tj) jj < CkPt-P||IvI for v E H, t, > 0. 

This follows again by spectral arguments from 

Ir( Z)nj- ez< CLOMp forz > 0, 

and shows that even with v only in H, the O(kP) convergence is retained for tn > 0. 
It follows also that for 0 < q < p the intermediate estimates 

(1.5) || p-u(tp) | -qV for v E D(AP-q) 

hold. 
The question we want to address below is to what extent these error estimates with 

reduced regularity assumptions carry over to semilinear equations. Thus assume that 
f(t, u) is a smooth function on J X H, where J = (0, T] with T < x, and consider 

the semilinear problem 

(1.6) ut + Au = f(t, u) for t E J. 

u (0)= V. 

For its approximate solution we will investigate in Section 2 single-step discretiza- 
tion schemes of the form 

Un+= r(kA)Un + kF(k, tn, Un) for tn E J, 

UO = v, 

where r(z) satisfies (1.2) with p = 1 and F(k, t, v) is chosen to be consistent with 
(1.6) in a sense to be made precise below. As an example of such schemes, consider 
the standard first-order backward Euler scheme defined by 

(1.7) Un+i = (I + kA) 'Un + k(I + kA)'lf(tn+1, Un+1)4 

or the linearized version 

(1.8) Un+ = (I + kA)1l Un + k(I + kA)-lf(tn, Un) 

where in the first case F(k, tn, Un) is defined implicitly by (1.7). We shall be able to 
show (Theorem 1) that for such schemes 

1Un - u(tn) | Cktlog k for tn E, 
J 

where C depends on an upper bound for jjvjj, so that for first-order schemes the 
estimate (1.4) essentially remains valid in the semilinear case. 

In Section 3 we briefly recall the definitions and basic properties of Runge-Kutta 
methods (cf., e.g., Crouzeix [2]) and show that our result above applies to such 
methods. 

In Section 4 we shall then demonstrate that, more surprisingly, it is not in general 
possible to generalize the higher-order estimate (1.4) with p > 1 to semilinear 
equations. This will be done by exhibiting a simple system of the form (1.6) such 
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that, for any choice of a Runge-Kutta method satisfying (1.3), and any t E J, we 
have 

limsup IUn - u(t) || > ck withc = c(t) > 0. 
n =t/k -o 

We shall then proceed, in Section 5, within the framework of Runge-Kutta 
methods satisfying (1.3), to show (Theorem 2) that if the method is accurate of order 
p, with order p - 1 for the intermediate equations (cf. Section 5), then, if u(j)(t) are 
bounded for j < p together with tu(P)(t), f(t, u(t))(J), j < p, and tf(t, u(t))(P), we 
have 

11U1 - u(tn)I|| CkP(tn logtj + (logtki)) for t E J 

which is thus an analogue of (1.5) with q = 1. Again, in practice, these assumptions 
will require certain compatibility conditions at t = 0. 

These investigations are in a sense a continuation of work by Johnson, Larsson, 
Thomee and Wahlbin [3] concerning finite element type discretization with respect 
to the space variables of semilinear parabolic equations, and as we shall see below, 
our present results may be combined with those of [3] to yield error bounds for 
completely discrete schemes. The fact that the nonsmooth data error estimates for 
the linear homogeneous equation do not generalize to the semilinear problem for 
higher-order methods was shown in the case of semidiscretization in space in [3] by a 
counterexample, which was the starting point of this work. 

2. The First-Order Error Estimate for Nonsmooth Data. Consider the initial value 
problem 

(2.1) ut + Au=f(t,u) for t EGJ = (0,T], 
(2.1) 

~~~u (0) = V 

where A is a selfadjoint positive definite operator in a Hilbert space H and where 

f (t, u) has values in H and is continuous and bounded together with its first-order 

derivatives with respect to t and u for (t, u) E J x H. This problem has a unique 

solution on J for v E H, which satisfies the integral equation 

u(t) = E(t)v + f E(t - s)f(s, u(s)) ds, 

where E(t) is the semigroup generated by -A. This semigroup is analytic, since by 

spectral representation 

t|| AE (t) v || _< sup (tze -tz) 11 v || = C|| v 11, 

so that, in particular, for the solution of the homogeneous linear problem (1.1), 

C 
||ut(t) ||=|Au(t) ||=|AE(t) v ||< t || v || for t c= J. 

and for the solution of (1.1) we also have that ut is bounded in H if v E D(A), i.e., 

I|ut(t) || = |I E(t)Av|| < | IAvI. 
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We shall need the corresponding results for the solution of our semilinear problem 
(2.1). 

LEMMA 1. There are constants Cl = C1(p), i = 0, 1, such that the solution of (2.1) 
satisfies 

I|u,(t) || I Cot-l for all v E H with |vIIv| p 

and 

11u,(t) || < C1 for all v E D(A) with jIAvjj < p. 

The constants C, i = 0,1, depend only on p and on bounds in H for f, ft and f" and 

are independent of the Hilbert space H and the positive definite operator A. 

Proof. We introduce the symmetric, positive definite bilinear form 

a(v, w) = (Av, w) for v, w E D(A), 

which we may consider extended to the subspace V of H defined by the norm 

jjI v I = a( v, v)1/2. We may then write our differential equation in weak form 

(2.2) (ut, T) + a(u, w) = (f(t, u), T) forT & V. 

We obtain by differentiation with respect to t, which is legitimate since the equation 
obtained is linear in ut, with bounded coefficients, 

(2.3) (UOt p) + a(ut, p) = (ft(t, u) + f.(t, u)(u,), p) for t E J, 

and hence with p = ut, 

2 dt llt 1 + 11ut 11V < 
CO||8t 11+ 1) 11ut 11 

This yields 

d- 1 ut 1j < CIu It 11 + C, dt 

and, since J is bounded, 

I|Ut( t) || < CjIIu(0) || + C < C1j Avj j+ C < C1(p), 

which is the second statement of the lemma. 
In order to show the first, we choose p = t2ut in (2.3) to obtain 

ld t2IJutIIt + 
fJut), Uj+ tlU 1<Ol + C, 

2 dt(t2I|utII2) + V= t2(fA utt) t11ut 12 Ctjju |+ 

and thus 

t211 Ut ( t) 112 < SI, Ui t 112 s C t Cu~t)1 s~ctsi~ ds + C. 

Taking p = tut in (2.2), we find 

tI2utII + d (tiulIU) = t(f(t, u), Ut) + 2 |IU1V, 

and hence 

ft su ( s ) j 2ds < C 
2 

uII vds + C. 
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Finally, 9p = u in (2.2) gives similarly 

ft llulvds~lvl2 Co (p), 

which completes the proof. 
As in the introduction, we consider now a difference scheme for (2.1) of the form 

(2.4) Un+I = EkUn + kF(k, tn, Un) for tn E J. 
U = v, 

where Ek = r(kA) for some rational function r satisfying (1.2) with p = 1 and (1.3), 
and where F(k, t, (p) is a sufficiently smooth function chosen to make (2.4) con- 
sistent with (2.1). For a finite-dimensional problem this would simply mean that 

(2.5) F(O,t,q)) = f(t,q)); 

in the general Hilbert space context we shall need to make this more precise. We 
shall thus assume that F is uniformly Lipschitz continuous will respect to A, so that, 
for some ko > 0, 

(2.6) ||F(k, tp) -F(k, t, 4) I| < C|p - |1 on [0, ko] x J x H, 

and, in addition, that 

(2.7) ||A-1(F(k, t, )) -f (tT)) | Ck(IIAp || + 1) on [0, ko] x J x D(A). 

Note that the latter condition follows from (2.5) in the finite-dimensional case if F is 
Lipschitz continuous with respect to k. Observe also that (2.6) implies 

(2.8) IIF(k, t, q)) || < C(1 + 11k 11) on [0, ko] x J x H. 

We are now ready to state and prove the main result of this section. 

THEOREM 1. Assume for the difference scheme (2.4) that Ek= r(kA), where r 
satisfies (1.2) with p = 1 and (1.3), and that (2.6) and (2.7) hold. Then there is a 
constant C = C(p) such that for tn E J 

IUn - u(tn)II C( t log + k(log tn)) for v E H with IlvII < p. 

The constant C depends, in addition to p, only on bounds for If, , fu and on the 
constants of (2.6) and (2.7) and is independent of the particular choice of the Hilbert 
space H and the positive definite operator A. 

Proof. We find at once 
n -1 

Un = E nv + k E E- 1 -jF(k, tj, UJ). 
j=O 

For the exact solution we may write similarly, with IJ = (t, tj +) and Un =U(t), 
n - I 

Un = E(tn)v + f E(tn -s)f(s, u(s)) ds 

so that for the error, en = Un - unt 

(2.9) en = (E n - 
E(tn))v 

+ E 
J Dn (s)ds, 
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where 

Dn j(s) = E-1-jF(k, tj, U1) - E(tn - s)f (s, u(s)). 

We write this latter expression in the form 

Dn j(s) = En-1-j(F(k tJ U) -F(k, tj, uj)) 

+Ek j-E(tn--j))F(k, tj, uj) 

+E(tn-l-j) (F(k, tj, uj) -f (tj, uj)) 

+E(tn-l-j)(f (t j u) -f (s, u(s)) 

+ (E(tn-l))- E(tn -s))f(s, u(s)) 

5 

= E dj1(s). 
l=l 

We now proceed to estimate these five terms for s e Ij. We first have, by the 
stability of Ek and (2.6), 

|| djl -<- C|| UJ-Uj - |-C1 ej 11. 
For the second term we note that (1.4) may be written 

(2.10) (En - E(tn))V| V C- ||v|| for tn > 0, tn 

and we conclude, by (2.8), 

|dj,2|| -C 
k 

for j n -. 
tn-1-j 

Since dn 1,2 = 0 we may write 

dj,21tn-i forO j n-1. 

For the third term we use the consistency condition (2.7), the analyticity of E(t) and 
Lemma 1 to obtain for 0 < j < n - 1, 

I|dj,3 II= IIAE(tn, -,)Aj-'(F(k, tJ, uj)-f (tj, u)) | 

< t~ k(|| Auj | + 1) < C 1 (|U,(tj) || + 1) < Cl 
tn-1-j tn-1-j tjt~~~~n -i1-j 

For j = 0 and n - 1 we find easily by the boundedness of F and f, 

||dj,3 1k < C = Ck < C t 
ti tltn 

so that we may write 

tidC tn j tn ( tj + I n-1 

For the fourth term we have 

ldj4 111 |f(tj, Uj) -f(s, u(s)) 11 C(k + I uj- u(s) 9 
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and, since d04 is bounded, 

k 
dj,4 1C t for O < j < n-1. 

1+ 1 

Finally, 

dj = |AE(tn-l-j)A-1(E(tj+l - s) - I)f(s, u(s)) 

< C 
k 

forj<n-1, 
tn-1-j 

where we have used the analyticity of E(t) and the fact that 

e- ? 1 

- s)z 
|| A'( E( t,+ l- s)- I )V|| < sup |1 Z | | | < CkllVII v1. 

Again, 

Ildn-,5l <c = c k tl 

so that 

sj5 < Ct 
k 

forO j < n-1. 
n-j 

Altogether we have thus from (2.9), using (2.10) to estimate the first term, for 

1vII < p, 

Ile 11 < Ck + Ck Y, 11 e 11 + C - Y, - < Ck Y.li 11I1 + C- lo1g( n+ 1); 
n j=O n j=1 J j=I n 

setting /3ln= kZ oIej II, we thus have 

/3n < (1 + Ck)in-1 + klog(n + 1), 

and hence 

n-i-ii 
/8n < k E (1 + Ck) I log(j + 1) < Cklog(n? 1) < . Ck(log(n + 1))2 

j=1 j=1 

and finally 

lienIL1 <Ck(log(n + 1))2 + C- log(n + 1) 
tn 

=Ct t log k1 + k(logtk )2)' 

which completes the proof of the theorem. 
As our first example we consider the linearized modification of the backward 

Euler scheme defined in (1.8). Here, 

F(k, t, p) = (I + kA) 1f (t, ), 
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and it is clear from our assumption on f that (2.6) is satisfied. Further, we note that 

A-'(F(k, t, m) - f (t, p)) = k(kA)j'((I + kA)' - I)f (t, A) 

= k(I + kA)j (t,cp) 
and hence 

|A-'(F(k, t, A)f (t, m)) ||<Ck, 
so that (2.7) holds even without the term IIATpI. For schemes with this property the 
result of Theorem 1 is in fact valid without the term Ck(log (t" +Ilk))2. 

Turning now to the standard backward Euler scheme, we have here 

F(k, t,cp) = (I + kA) lf (t + k,'I), 

where ' = '(w) is obtained from the nonlinear equation 

' = (I + kA)-'(cp + kf(t + k, I)). 

It is clear by the contraction mapping theorem that this equation has a unique 
solution I for small k and that I depends Lipschitz continuously on qp. Obviously, 
again (2.6) is satisfied for this scheme. As for (2.7), we have 

T - = ' -(I + kA)1 - (I + kA)'kAcp 

= k(I + kA)>1f(t + k,'J) -(I + kA)-'kAT, 
and thus 

114' - w11 < Ck(1 + l|ATI). 
Further, 

F(k,t,p) -f(t,w) = (I + kA) '(f(t + k,) -f(t + ki)) 

+(I + kA) '(f(t + kcp) -f(t,w)) 

-(I + kA) 'kAf(t, p) 
and hence, since A-' is bounded, 

|| A-'(F(k, t, ) -f (t, p)) | < C|| Ti - 1 + Ck < Ck(l + lI Am), 
which is the desired estimate. 

The above result may be applied to parabolic problems which have already been 
discretized in the space variables. For instance, for concreteness, consider the case 
that H = L2(Q), where 2 is a domain with smooth boundary in Rd, where A = -t, 
with D(A) = H21() n H2(Q), and where f(t, u) is generated by a smooth function 
f(x, t', U) on Ki xJ x R which is bounded together with its first-order derivatives 
with respect to t and u. Now let Sh C Ho(Q) consist of continuous, piecewise linear 
functions on a partitioning of Q into simplices and let uh: J -- Sh be defined by 

(Ubht, X) +((Vuh,VX) (f(., t, uh), X) for X c Sh, t E J. 
(2.11) u(O 

where (a,.) denotes the standard inner products on L2(Q) and L2(E2)d. Defining 
the discrete solution operator, Th: L2(E2) -> Sh of the associated elliptic problem by 

(vThw,vx) = (w,X) for XESh, 
and setting Ah = -Trl, (2.11) may be written in the form (2.1) as 

(2.12) Ub - A h - P f(1 t, U,) for t E J, 
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where P0 denotes the orthogonal L2-projection onto Sh. From [3] it is known that, if 
Vh = P0v, the error in this space discretization satisfies 

IIUh(t) - u(t) 1| < C(p)h log - for all v E L2(9) with vj v p, 

where h is the maximal diameter of the simplices of the partitioning. 
Our above analysis applies to this situation and yields estimates which are 

uniform in h. In fact, if f is as above, then Pof(x, t, u) generates a function 
J X Sh 3 (t, Uh) _ POf(% t, Uh) E Sh which satisfies our above assumptions with 
respect to the Hilbert space defined by Sh equipped with the norm of L2(A). For 
instance, the derivative of this function with respect to u applied to w E Sh is 

Po(fu(-, t, u)- w) E Sh, which is clearly bounded in the L2-norm, uniformly in h. 
Also, if vh = P0v and lvii < p, we have iiVhii 1< vii < p and hence Theorem 1 
implies that for a completely discrete solution obtained by discretization in time of 
(2.12) by a scheme of the above type, and with Vh = P0v, we have 

U-u(tj)II C(p)( t log7? + k[t -logt, +( logt )2]} 

for v E L2(i) with j|vj p. 

We remark that in interesting applications of the type just described it is generally 
the case that f and fu are unbounded for u E R so that, as u is not necessarily 
bounded when u E L2(9), the above analysis does not apply. However, it is then 
often the case that by some independent argument, for instance by a maximum 
principle, the exact solution is known to be uniformly bounded in modulus by some 
constant M, say, in some interval J = [0, T], if the initial data are bounded, and 
that thus the values of f(x, t, u) for lul > M do not influence the exact solution of 
(2.1). One can then modify f for these values of u in such a way that our 

assumptions become valid, thus changing the equation (2.1) without changing its 
solution for the initial data under consideration. With F(k, t, u) based on the 
modified function, our assumptions (2.6) and (2.7) may remain valid. Note that this 
procedure might lead to a different discrete solution than the one based on the 
original 7. Similarly, such a modification would change the semidiscrete equation 
(2.11) and thus also the totally discrete solution based on (2.12). 

3. Runge-Kutta Methods. We recall (cf., e.g., [2] for details) that a Runge-Kutta 
method for the initial value problem 

y' = g(ty) fort >0, 

Y(O) = Yo' 

defines an approximate solution Yn at tn = nk successively by setting Y0 = yo and 
then determining Yn+1 from Yn for n > 0 as follows: Let tnJ = tn + kT, be given 
quadrature points with Tj > 0 for j = 1, .. ., m; define intermediate values YnJ, 
j = 1,..., m, approximating y(tnj) by the nonlinear system 

"n 

Yn,= Yn +k E a,,g(tnjYny) I = 
J=1 
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and set finally 
m 

Yn+ 1 = Yn + k E big( tnj v Yn j) - 
j=1 

The coefficient matrix s= (aij) and the vector b = (bl,..., bm)T are associated 
with the quadrature formulae 

(3.1) f I(t)dt - E aij*(T) 

and 

(3.2) f I(t)dt z E bj*(Tj), 
j=1 

respectively, and we shall always assume that the latter is exact for constants, so that 
m 

(3.3) E bj = 1. 
j=1 

The method is implicit unless d is strictly lower triangular. 
Applied to the parabolic problem (2.1), the method takes the form 

m 

j=1 

m 

(3.5) Un +1 = Un + k a, bi (-A Unj + f (tnj, Unj)) - 
j=1 

We shall assume that a? has no eigenvalues a. with aj < 0 so that, in particular, 
the method is implicit and I + z-6 is nonsingular for z > 0. We set 

a(z) = (a(z)) = (I + z-V) 

S(Z) = (Si(Z),..., Sm(Z))T -(z)e where =T 

S(z)= (SiJ(z)) =(z) v 

r(z) 1 - zbTs(z) = I - zbTa (z)e, 

q(z)T = (qi (z) ,.** q (z)) = bTa(z), 

and note that all these functions are bounded for z > 0, and that a, s, S and q all 
vanish at z = x. With this notation, the equations (3.4) and (3.5) may be written 

m 

Uni = si(kA)Un + k E sij(kA)f(tnj, Un,), i = 1,..., m, 

(3.6) m1 

Un = r(kA)UUn + k E qj(kA)f(tnj, Unj) 
j=1 

where the rational functions of kA are defined by spectral representation and thus, 
by the above, are all bounded linear operators on H. 

Henceforth we shall restrict ourselves, as earlier in Section 2, to schemes such that 
r(z) satisfies the strong stability property (1.3). Recall also that the method is 
accurate of order p, and, in particular, that (1.2) holds, if (3.1) and (3.2) are exact for 
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polynomials of degree p - 2 and p - 1, respectively (cf. [2, p. 12]). For p = 1 this 
reduces to the condition (3.3). 

Since f(t, Ap) is Lipschitz continuous with respect to p, it is easy to see that the 
nonlinear system (3.6) has a unique solution (U,. .., Unm) for UJ given, and that it 
depends Lipschitz continuously on U4 We may thus write our method in the form 
(2.4), where 

m 
F(k, t,) = E qj(kA)f (t +Tjk? (pi), 

j=1 

with Tp = T1(k, t, Tp) defined by 
m 

(3.7) pi = s1(kA)cp + k E qj(kA)f(t + Tjk,9), i =. 
j=1 

We show that this method satisfies the conditions of Theorem 1. In fact, (2.6) is 
obvious and it remains only to consider (2.7). We write 

m 
F(k, t,) -f (t, 9) = E qj(kA)(f (t + Tjk, q) -f (t + Tk,9 a)) 

j=l 
,fl 

+ E qj(kA)(f(t +Tjk,) -f (ta)) 
j=1 

+ Y, qj(kA) -I )f (t, c) 

=81 + 82 + 83' 

Here 
m 

11A-1811 < C|| 81 11 < c E 11 )j -q) 11 
j=1 

and, noting that si(O) = 1, we have easily from (3.7) 

II' - qII A- I(si(kA) - I)'pI + Ck < Ck(IIAqII + 1). 

Further, it is obvious that 

jjA-182 || < C11 8211 < Ck. 

Finally, since by (3.3) 

E qj(O)= m 0= 1, 
j=1 j=l 

we obtain 

IIA83.11= k (kA Y(, qj(kA) I)f < Ck. 

Together, these estimates complete the proof that the Runge-Kutta methods under 
consideration satisfy the assumptions of Theorem 1. 
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4. The counterexample. We shall now show that, at least for methods of Runge- 
Kutta type, the estimate of Theorem 1 is essentially best possible. For this purpose 
we introduce the unidimensional parabolic system 

U U V~~2 
(4.1) Ut X X in [O,7j] xJ, 

Vt -VXX= 0 

with the boundary and initial conditions 

(4.2) u(O, t) = u(r, t) = v(O, t) = v(7, t) = 0, 

2u(x, O) = 0, v(x, O) = (x), 

which we consider in the Hilbert space H = L2(O, r)2, with the obvious correspond- 
ing definition of A. We note that by the maximum principle Pv(t)HL (a) is 
nonincreasing and hence u(t) is uniformly bounded on J for all w with a common 
uniform bound. 

We consider now the discrete solution (Uk Vn) of (4.1), (4.2), defined by a 
Runge-Kutta method as described above. We shall show that for no t e J is it 
possible to find C = C(t) such that the error, measured in the norm in L2(0, IT)2, is 

bounded by Ckek with ek ?* 0 as k - 0, for all w with IIWIIL < 1, say. More 
precisely, we shall show that there is a positive constant c such that for initial data 
of the form w = sin Nx with N = 1, 2, ... it is possible to find associated sequences 
{ N } and { kN } with nNkN = t such that the error in the u-component satisfies 

(4.3) lUN - u(t) IL2(OX) ? ckN for large N. 

This will be demonstrated by showing that the corresponding estimate holds for the 
first Fourier coefficient of the error. 

For the v-component of the exact solution of (4.1), (4.2) we have at once 

v(t) = -N2tsi Nx, 

which gives for the determination of u the inhomogeneous linear equation 

u - u = e- 2N2 tsin2Nx fort e J 
u(O) = 0. 

Similarly, we have for the corresponding discrete problem, using the Runge-Kutta 
method, with our above notation, 

Vn =r (kN 2)sin Nx for n E J 

and thus also 

Vni = sI(kN2)r(kN2)nsinNx, i = 1,...,m, 

and hence for the determination of Un the recursion formula 
m 

(45 ) +1 = r(kA)UUn + k L q1(kA)s1(kN2)2r(kN2)2nfsin2Nx, 
(4.5) ~~~~~j=1 

UO= 0. 

We now introduce the first Fourier coefficients of u(t) and Un, 
2 r . u2 a 

a(t) = -J u (x ,t)sin xdx and a- = J Un (x)sin xdx. 
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We obtain from (4.4) 

a' + a = ie 22t( sinxsin2Nxdx 8Nd e2N2t 
7T O 7T(4N2 -1) 

a(O) = 0, 

which yields 

7)(4N _1) 2N 1 

Correspondingly, from (4.5), 
m 

=+1 r(k)a-n + k Y. qj(k)s(kN2)2r(kN2)2fl sinxsin2 Nxdx, 
j=l 0 

and hence 

SN2 n-l 1m 
a-n= 8N 2 ; Er(k)' 1'k E qj(k)sj(kN2)2r(kN2)2i 

7= (4N - 1) i=o j=1 

=- N2 k E qj(k)sj(kN2)2r(k) r(kN2)2f 
7 (4N -1) /=l r(k) - r(kN2)2 

We write 

aC- a(t) 8N2 ( m - r(kN2)2n 

kn = (4 2 ) | E qj(k)sj(kN 2)2 
k 7T(4N2 - j)=1 r(k) - r(kN2)2. 

2N2 1I - e2N2t)} 

q~~~~~~~~~~~~~~~~~~~~ 
We now fix t positive and set, with M a fixed positive integer, nN = MN2 and 

kN = t/nN so that kNN2 = t/M = to. We note that since r(z) = e-Z + O(Z2) for 
small z, we have r(O) = 1 and r(kN )N = r(t/nN)nN e-t as N -* oc. Further, 
since Jr(to)j < 1, we have r(kNN2)2nN = 

r(to)2nN 0 as N -4 ox, and since q)(O) 
= bj, we conclude 

(4.6) lim =- (t) =-e bsj(tO)2 1 - 

N- oo kN ]T =1 1-r(t 0)2 2DO 

We shall show that for M suitably, chosen the last factor is nonzero, which then 
shows that, for large N, 

UInfN u(t) IIL2(O 7T)> ()2) a a(t)| > ckN with c = c(t) > 0, 

and thus completes the proof of (4.3). Assume therefore that for any choice of M the 
expression inside the parentheses in (4.6) vanishes. In such a case, this rational 
function vanishes identically, and we have 

m 
2z j b~j~(z)2 1 - r(z)2. 

j=l 
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But for large z, sj(z) = O(z-') so that, by letting z tend to infinity, we obtain 

Ir((oo)l = 1, contrary to our hypothesis. This completes the proof. 
We note that the right-hand side of (4.1) is not bounded for v e R so that, 

formally, the assumptions of Section 2 are not satisfied for (4.1), (4.2). However, 
both lv(t)l and IVl are bounded by 1 and lJIj by K = maxjsup,>0lsj(z)l. Hence 
only the values of the right-hand side for IvI < K enter the calculations, and we may 
replace v2 by a smooth function f(v) which satisfies our previous conditions and 
agrees with v2 for lvi < K, without changing either the exact or the approximate 
solutions. 

5. A Higher-Order Result for a Class of Runge-Kutta Methods. Although for initial 
data in H it was only possible, above, to show an essentially first-order error 
estimate, it may still be possible to do better for initial data which are more regular, 
but not regular enough for optimal order estimates to hold uniformly down to t = 0. 
In this section we shall show a O(kP) error estimate for a Runge-Kutta type method 
based on quadrature formulas of orders p - 1 for the intermediate points and p for 
the whole interval, and for the case that u(P) and f(t, u)(P) are of order O(t-1) for 
small t. 

THEOREM 2. Let U, be the discrete solution of (2.1) by a Runge-Kutta scheme 
satisfying (1.3) and for which the quadrature values (3.1) and (3.2) are exact for all 
polynomials of degree p - 2 andp - 1, respectively. Then there is a constant C = C(p) 
such that 

- Un-U(tn) || . CkP(tn1log tk + (log tn)2) for tn (E J 

if, with T(t) = f(t, u(t)), 

(5 .1) maxim maxim ( llu(J1) il lq (j) ll) tla1, t F11) P. 

The constant C is independent of the particular choice of the Hilbert space H and the 
positive definite operator A. 

Proof. Let us introduce the error functional for the quadrature formulae (3.1) and 
(3.2), transformed to the interval In, i.e., 

m 
tn 1= Qnsj t = 

| 
Ads -k ajl*(tn1) j , m, 

m 

Qn tt f n+1 Ids-k E, b,*(tni). 
1=1 

Recall that our assumptions that (3.1) and (3.2) are exact for polynomials of 
degree p - 1 and p - 2, respectively, imply 

(5.2) j| Qnj(I) || < Ck'+ 1sup II'I for I < p - 1, 
In 

(5.3) ||(Qn(I) < Ckl+1sup It'I1'1I for 1 < p. 
In 
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We note now that Qnj(u,) and Qn(u,) are the truncation errors in (3.4) and (3.5), 
or that 

m 

u(tni) = u(tn) + k Y ai(-Au(tnj) + f (tnj, U(tn))) + Qni(Ut), 
1=1 

i= 1...,9m, 
m 

U(tn+l) = U(tn) + k E bj(-Au(tnj) + f(tnj U(tnj))) + Qn(ut)- 
j=1 

It follows by obvious calculations that 
m 

u(tni) = si(kA)U(tn) + k Y sij(kA)f(tnj, u(tny)) 
j=1 

m 

+ Y aij(kA)Qnj(ut), i 19 .. m, 
j=1 

m 

u(tn+1) = r(kA)u(tn) + k Y qj(kA)f (tnj, u(tnj)) 
j=l 

m 

- E kAqj(kA)Qnj(ut) + Qn(ut). 
j=1 

Hence for the errors en = Un - u(tn) enj = Un - u(tnj), we have 
m 

eni= sI(kA) en + k Y sij(kA)(f (tnjq Unj)-) f (tnjq U(tnj))) 
j=1 

m 

_. a ij(kA)Qnj(Ut)g 
j=1 

(5.4) en+= r(kA) en + k Y qj(kA)(f(tnjg Unj) -f(tnjg u(tnj))) 
j=l 

m 

+ Y kAqj(kA)Qnj(ut) - Qn(ut) 
j=1 

= r(kA)en + ?lnl + 'qn2 + qn39 

and, where as in Section 2 we have set Ek = r(kA), 
n-1 

(5.5) en = s? E,~nk (1ql + '1j2 + 71j3) - 
j=O 

We obtain at once from (5.4), for k small, 
m m 

E l|eni|| < CI1enII + C E IIQnj(Ut) 11 
i=1 j=l 

and hence, using also (5.2), for j = 1,.. ., n - 1, 
m m 

II'jiII CkYE I|ejlII< Ck (IejII+ E IIQjl(ut) i) 

< Ckjjejjj + CkP+lsup 11u(P)11< Ckjjejjj + CkP+ltj- 

< Ckjjejjj+ CkP+lty-1l 
I.1 
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and, for j = 0, 

|| no, || < Ck|| eo || + CO'sup || u(P-') 11 < CkII eo 11 + CkP+'t , 
IJ 

so that for the sum in (5.5) withqj, 
n-1 n-1 n-1 

E n- 1j ni I < Ck I Ile. 1I + CkP+1E 
k= j=0 j=0j+l j=O 0= 

n-1 t 
< C k Y, || e, || + CkP log nk 1. 

j=O 

In order to estimate the term involving 'qj2, we note that since zq(z) is bounded, 
we have, using the property (1.3), 

jr(z )nzq(z)I < C +k 
n + ~ tn?1, 

and hence, for j = 1,. ..,n - 1, 

E''12 j k m k+ 
||Ek n-1jNV2 || Ct E (Ut) < C t supuP) tn-J t=1n-J I 

+1 l ~~kP+ 1 I I Ck P' - ck'-~ +~1 
tn_ jti tn tj tn-J 

so that, again with an obvious modification for the term with j = 0, 

kP+1n I + 1 t 
E n-1-j n-iC( __ Cog __+ k 77j2 t n t J tnJ)t k 

j/=O n -= j i n- 

It remains to estimate the term in qj3which we write 

rnj3 = Q,(u,) = Q,(-Au + 9(u)) = -AQ,(u) + Q,(99). 
For the second term we have by (5.3) and our assumption (5.1) 

kP+1 
||Qjg)| < C t~ = C . + for j = O,...., n -1, 

and hence 
n-i t,4 

| En-l-JQj() 
1 

Ck~log k 

j=O 

To estimate the first, we note that 

||EknAv || < -|(r(kA) ne-nkA)Av || + I-nkAAvII 

C k CIAVII +C v|| <-(11 v|| + k||Av||) for n > O 
tn+1 tn+l tn+l 

(if r(oo) = 0 we have more directly IIE2nAvIl =.Ilr(kA)nAvII < CtI1jjvjj), and hence, 
using (5.3) with I = p and I = p - 1, and noting also that tAu((P) is bounded by 
our assumptions, 

kE' QJ(u) < tn-i (Q(u) II + kIjQj(Au) j) < CkP+1 
tn 
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so that 
n-i k~ P~ 

;||Ek -jA Qj (u) ||< C tlog O 
j=0 ~~~~~~~tn k 

Altogether, we thus have 
n-1 

IneniI Ck E || ej 11 + Ckptn;log k 
j=O 

from which our result follows in exactly the same way as in the proof of Theorem 1. 
As an example where Theorem 2 applies, consider as in Section 2 the case that 

H = L2(2), where S2 is a domain with smooth boundary in Rd, now with d < 3, 
where A = -A with D(A) = Ho() fl H2( Q), and where f(t, u) is generated by a 
smooth function A(x, t,u) on F x J X R which is bounded together with its 
derivatives of first and second order in t and u. The equation (2.1) thus reads 

Ut Au =f(x, t, ) in Q x J, 
(5.6) U= O onaQ x J, 

u(xO) =v(x) in t. 

Assuming now that v E D(A) with IlAvil = IIAVIIL2(,) < p, it follows from Lemma 1 
of Section 2 that u and u' = ut are bounded in H for tE J. To see that also 
tu" = tuft is bounded in H, we differentiate (5.6) twice to obtain 

(5.7) Utt-Au, = it + TV 
- 

U, 

and 

(5.8) Uttt - Autt = ftt + 2Atuut + futu 
, U2 

+ iUU 

Note that, since d < 3, we have 

(5.9) IjpjjL. (s) < C1I (PIIH2(g) < CjjA(pjj for Tp e D(A). 

Therefore, since ut is bounded in H, we obtain from (5.7) 

||Ut2 || U |t U| S1 t 11 <' CII Aut 11 < C|I Utt 11 + C. 

Multiplication of (5.8) by t2Utt and integration over Q gives 

2 d t21l Ott il + t2l VU Ott 11 
a C2( || Utt 1| + 11uttil1 + tll ut 

< CtI Utt 12 + C, 

and hence 

t211 Utt 11 < Cf SI U, 11 2Ids + C. 

Multiplication of (5.7) by tutt and integrating gives similarly 

sIut 11 2ds Cft C V dS + C, 

and using instead (5.7) multiplied by Ut we have finally 

J|t IIVuI| dS CJJUt(O) || + C < C,,AV + C 
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Together, our estimates show the boundedness of tutt in H. We also have for 
p(t) = f(t, u(t)) that qp and qp' = ft + faut are bounded. Finally, in order to see that 
tq/" is bounded, we note that by the above, 

1 1= 1 + 2ftut + f1ut + fButt C(II Utt 1 + I) < Ct-1. 

The assumptions of Theorem 2 are thus satisfied with p = 2, and we conclude that 
for such methods 

-Un-U(tn)|| C(p)k2(t-1log + (log nI1)2) if IjAv j| < p. 

The same method can be applied to the discretization in time of the equation 
obtained from (5.6) by discretization in space. Consider for example, as in Section 2, 
the semidiscrete equation (2.11) or (2.12) with continuous piecewise linear approxi- 
mating functions, now on a quasiuniform partitioning of Q. With Vh = P1v = -ThAv 
the elliptic projection of v onto Sh, we have for v E D(A) 

11Uht(O) 11 =1AhVh + Pof(O, Vh) 1| < IlAVil + C- 

It is easy to show that the error in the semidiscrete solution is then bounded as 

|| Uh(t) - U(t) || < C(p)h2 for Av < p, 
and we also conclude by Lemma 1 that Uh and Uhft are bounded in L2(2) with lAv. 
The same arguments as above will then show that tUh tt is bounded in L2(A), 
uniformly in h, provided only that the analogue of (5.9) is valid in the present 
situation, namely 

(5.10) iX IILI4(Q2) < CIIAhXII for X E Sh, 

or, equivalently, 

IIThXIIL (Oh) < CIlIX 1 for X E Sh, 

where Oh (C 2) is the union of the simplices in the definition of Sh. But with 
T = (-A)-1 we have by (5.9) 

IITXIIL.(0)4 Cix II11 
and it remains to estimate (Th - T)X, the error in the elliptic problem with 
right-hand side X. By well-known error and regularity estimates for the elliptic 
problem (cf. Schatz and Wahlbin [4]) and an inverse estimate to estimate the norm 
of X in H1/2 +E(2) by that in L2(S), we have with 0 < E < 2, 

-(Th T)XIIL>(Qh) <- C log1 inf II TX L. (I2(h) < Ch logl| TX II W, (2) 

< Ch log llTX IIH5/2+e(g) I Ch log-11 X IIH1/2+e(g) 

<1 Ch 1/2- "logIh11 X 11 -< ClI X 11 

Together, our estimates show (5.10) and thus complete the proof that tUhtt is 

bounded. As above, it follows that Wh = Pof( - t, u) is bounded together with 9th 

and tatt, uniformly in h, and we conclude by Theorem 2 for the completely discrete 
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solution UJ obtained by discretization in time of (2.12) that 

-Un -u(tn)ll C(p){h2 + k2[t-11og0 7 +(log n )2]} 

for v E D(A) with IlAvil|< p. 

For methods which are higher-order in space, a higher power of h may be 
obtained in combination with some negative power of tn. 

We close by exhibiting two examples of methods which satisfy our assumptions 
with p = 2 (cf. [2]). First let 

5 1 

T1=3, T2=1, = 12 12 bT 3 ~~3 1'4 

Then U, + 1 = b"2 and r(z) = (1 - 3 z)/(l + 3z + 6Z2) is the Pade approximant of 
e - Z of orders (1, 2) and satisfies r(oo) = 0. Secondly, with 

1 1 1 _ 1~~~~~~1 
1 2 2V '' 2 2 (1 ) 2( 2) 

we have (cf. Calahan's scheme) 

r(z) 1=rz I ( - with( oo)j<1 
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